
Caustics

CS500 RAY TRACING

BORJA PORTUGAL MARTIN

USING PHOTON MAPS

Caustics using Photon maps
Contents

 Motivation

 Approach

 Photon maps

 What are they used for?

 What are they?

 How are they generated?

 Photon emission

 Multiple lights

 Photon tracing

 Russian roulette

 Photon storing

 The photon

 KD-Tree

 Three maps

 Summary

 Rendering

 KD-Tree traversal

 Sphere VS Disk

 Radiance estimate

 Formula

 Filtering

 Summary

 Conclusion

 Why photon mapping?

 Credits

Motivation

Motivation
Caustics in Video Games

 Real time applications fake caustics

[gif01][gif00]

Motivation
Ray traced caustics

 Ray tracing is done offline, we can use all the computational power

[img00]

[img01]

Caustics
Motivation

 Glass in ray traced images without caustics do not seem correct

Approach

Approach
How can we do it?

 We want to simulate what light does

 Cast rays from the light source until we reach the camera (too expensive)

 Possible approaches:

 Monte Carlo integration

 Photon mapping: similar, but faster, approach to Monte Carlo

Photon maps

Photon maps
What are they used for?

 Caustics

 Global illumination

 Participating media

[imgSiggraph] [imgSiggraph]

[imgSiggraph]

Photon maps
What are they?

 Collection of photons (light rays that reached a diffuse surface)

 3D (its name made me, at first, think they were 2D)

[imgSiggraph] [imgSiggraph]

Photon maps
How are they generated?

1. Emit photons from the light sources

2. Trace photons until they reach a diffuse surface

3. Store them in a KD-Tree for fast access

Photon maps
Photon emission

 Photons are emitted from each light source

 Direction depends on the light type

 Emission directions for point light, directional light and area light respectively

[imgSiggraph]

Photon maps
Photon emission

 Power of the photon

 Information about the light source that emitted it

 Formula:

 𝑃𝑝ℎ𝑜𝑡𝑜𝑛 Power of each photon

 𝑃𝑙𝑖𝑔ℎ𝑡 Power of the light

 𝑛𝑒 Number of photons the light will emit

𝑃𝑝ℎ𝑜𝑡𝑜𝑛 =
𝑃𝑙𝑖𝑔ℎ𝑡

𝑛𝑒

Photon maps
Photon emission – Multiple lights

 We don’t emit the same number of photons per light

 Lights with more intensity will emit more photons

 Number of photons in the scene remains constant

 Photons will have similar power

 Makes the radiance estimate better

Photon maps
Photon emission – Multiple lights

Light A Light B Total

Power 9 1 10

Contribution 90% 10% 100%

Number of photons 100 100 200

Photon power 9/100 = 0.09 1/100 = 0.01 10

Light A Light B Total

Power 9 1 10

Contribution 90% 10% 100%

Number of photons 90 10 100

Photon power 9/90 = 0.1 1/10 = 0.1 10

Photon maps
Photon tracing

 Each time we hit a surface we would need to generate 2 photons

 Diffuse reflection

 Specular reflection

 The 8th bounce would generate 28 = 256 photons (this is bad)

 A lot of memory needed

 Most photons will have very low power

 Solution: Russian roulette

 Probabilistic approach

Photon maps
Photon tracing – Russian roulette

 Photon path examples:

 a: x2 diffuse -> absortion

 b: specular -> x2 diffuse

 c: x2 specular -> absorption

[imgSiggraph]

[imgSiggraph]

Photon maps
Photon tracing – Russian roulette

 Coefficients to determine the action of the photon

 𝐷 Diffuse reflection coefficient

 𝑆 Specular reflection coefficient

 𝐷 ≥ 0, 𝑆 ≥ 0, 𝐷 + 𝑆 ≤ 1

 Take random 𝑥 where 𝑥 ∈ [0, 1]

 𝑥 ∈ 0, 𝐷 → 𝑑𝑖𝑓𝑢𝑠𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 𝑥 ∈ 𝐷, 𝐷 + 𝑆 → 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 𝑥 ∈ 𝐷 + 𝑆, 1 → 𝑎𝑏𝑠𝑜𝑟𝑡𝑖𝑜𝑛

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

White wall Black wall Red wall Glass

Example materials

diffuse specular absortion

Photon maps
Photon tracing – Russian roulette

 Compute coefficients out of RGB coefficients

𝑃𝑟 = max 𝑑𝑟 + 𝑠𝑟 , 𝑑𝑔 + 𝑠𝑔, 𝑑𝑏 + 𝑠𝑏

𝑃𝑆 =
𝑠𝑟+𝑠𝑔+𝑠𝑏

𝑑𝑟+𝑑𝑔+𝑑𝑏+𝑠𝑟+𝑠𝑔+𝑠𝑏
𝑃𝑟 = 𝑃𝑟 - 𝑃𝐷

𝑃𝐷 =
𝑑𝑟 + 𝑑𝑔 + 𝑑𝑏

𝑑𝑟 + 𝑑𝑔 + 𝑑𝑏 + 𝑠𝑟 + 𝑠𝑔 + 𝑠𝑏
𝑃𝑟

Photon maps
Photon tracing – Russian roulette

 Applying 𝑃𝐷 and 𝑃𝑆

 𝑥 ∈ 0, 𝑃𝐷 → difuse reflection

 𝑥 ∈ 𝑃𝐷, 𝑃𝐷 + 𝑃𝑆 → 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 𝑥 ∈ 𝑃𝐷 + 𝑃𝑆, 1 → 𝑎𝑏𝑠𝑜𝑟𝑡𝑖𝑜𝑛

[imgSiggraph]

Photon maps
Photon tracing – Russian roulette (Summary)

 Pros:

 Reduces number of photon emission

 Less computation & storage required

 Keeps photon powers similar → Better radiance estimate

 Cons:

 Increases variance on the solution, we need to emit a lot of photons

 Not as many as without using Russian roulette

Photon maps
Photon tracing

 When a photon hits a surface we need to update its power

 𝑃𝑖𝑛𝑐 Power of the incident photon

 𝑃𝑟𝑒𝑓𝑙 Power of the reflected photon

 𝑆 Specular color of the surface (if specular reflection happens)

𝑃𝑟𝑒𝑓𝑙 =
𝑃𝑖𝑛𝑐 𝑆

𝑃𝑆

[img02]

Photon maps
Photon tracing

[imgSiggraph] [imgSiggraph]

Photon maps
Photon storing – The photon

struct photon
{

float x, y, z; // position
float r, g, b; // power
float dx, dy, dz; // incident direction

}; // 36 bytes

Photon maps
Photon storing – The photon

 In case memory is a concern, compressed version

struct photon
{

float x, y, z; // position
char p[4]; // power packed as 4 chars (Ward’s RGBE)
char phi, theta; // compressed incident direction

// (spherical coordinates)
short flag; // flag used in kd-tree

}; // 20 bytes

Photon maps
Photon storing – The photon

 Ward’s RGBE packing

 Same principle of mantissa and exponent in floating point values

 Normalize RGB floats to chars, exponent gives us more precision

 RGB → [0, 255] red, green, blue values

 E → [0, 255] Exponent

Photon maps
Photon storing – The photon

 Incident direction packing

 2 𝑐ℎ𝑎𝑟𝑠 → 16 𝑏𝑖𝑡𝑠 → 216 = 65536 possible directions

𝑝ℎ𝑖 = 255 ∗
𝑎𝑡𝑎𝑛2 𝑑𝑦, 𝑑𝑥 + 𝜋

2𝜋

𝑡ℎ𝑒𝑡𝑎 = 255 ∗
acos 𝑑𝑥

𝜋

−𝜋, 𝜋 → 0, 2𝜋 → 0, 1 → [0, 255]

0, 𝜋 → 0, 1 → [0, 255]

Photon maps
Photon storing – KD-tree

 Photons are stored when they hit diffuse surfaces

 Use a KD-Tree

 𝑂 𝑙𝑜𝑔𝑁

 Make sure is well balanced

 Use an array to represent it

Photon maps
Photon storing – Three maps

 Photon map types:

 Caustics photon map → Caustics

 Photon went at least through an specular reflection

 Global photon map → Global illumination

 Photons that hit a diffuse surface

 Volume photon map → Indirect illumination

 Indirect illumination of a participating medium

[imgSiggraph]

[imgSiggraph]

Photon maps
Summary

 Emit photons from all light sources

 Let the photons bounce through the scene

 Use Russian roulette to determine action

 Diffuse reflection, specular reflection or absortion

 Store the photons in the corresponding photon maps

Rendering

Rendering

 Photon mapping is a 2 pass render technique

1. Generate photon maps

2. Use generated photon maps to get the radiance estimation on the surface

Rendering

 Use the generated photon maps to get the radiance estimation

 Caustics photon map

 Global photon map

 Volume photon map

 Get nearest photons in the surface → KD-Tree traversal

[imgSiggraph]

Rendering
KD-tree traversal

1. Check plane side

2. Traverse child node

3. Distance to plane < Threshold

1. Traverse other child

Rendering
Sphere VS Disk

 Sphere

 Fast to locate photons, just need squared distance

 Can give wrong approximations on corners

 Disk

 Slower

 More accurate, takes surface into account

[imgSiggraph]

Rendering
Radiance estimate – Formula

 Outgoing = Emitted + Reflected

 𝐿𝑜 → 𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

 𝐿𝑒 → 𝐸𝑚𝑖𝑡𝑡𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

 𝐿𝑟 → 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝐿𝑜 𝑥,𝑤 = 𝐿𝑒 𝑥, 𝑤 + 𝐿𝑟 𝑥, 𝑤

 𝑥 → 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

 𝑤 → 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (Surface to camera)

Rendering
Radiance estimate – Formula

 Reflected radiance is computed by integrating the incoming radiance

 𝑓𝑟 𝑥, 𝑤′, 𝑤 → 𝐼𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑚𝑦 𝑐𝑎𝑠𝑒 𝑝ℎ𝑜𝑛𝑔)

 𝐿𝑖 𝑥, 𝑤′ → 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

 Ω𝑥 → hemi − sphere of incoming directions

𝐿𝑟 𝑥, 𝑤 =
Ω𝑥

𝑓𝑟 𝑥, 𝑤′, 𝑤 𝐿𝑖 𝑥, 𝑤′ 𝑛𝑥 ∙ 𝑤′ 𝑑𝑤′𝑖

Rendering
Radiance estimate – Formula

 Apply relation between the radiance and the flux

 The flux is represented by photons in the photon map

 𝑁 → 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑛𝑒𝑎𝑟 𝑥

𝐿𝑟 𝑥, 𝑤 =
1

𝜋𝑟2

𝑝=1

𝑁

𝑓𝑟 𝑥, 𝑤𝑝′, 𝑤 ∆Φ𝑝(𝑥, 𝑤𝑝)

Rendering
Radiance estimate – Formula

 Total incoming radiance 𝐿𝑖 𝑥, 𝑤 is the sum of all radiances

 𝐿𝑖,𝑙 𝑥, 𝑤 → 𝐷𝑖𝑟𝑒𝑐𝑡 𝑖𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

 𝐿𝑖,𝑐 𝑥, 𝑤 → 𝐶𝑎𝑢𝑠𝑡𝑖𝑐𝑠

 𝐿𝑖,𝑑 𝑥, 𝑤 → 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝐿𝑖 𝑥, 𝑤 = 𝐿𝑖,𝑙 𝑥, 𝑤 + 𝐿𝑖,𝑐 𝑥, 𝑤 + 𝐿𝑖,𝑑 𝑥, 𝑤

Rendering
Radiance estimate – Formula

𝐿𝑖 𝑥, 𝑤 = 𝐿𝑖,𝑙 𝑥, 𝑤 + 𝐿𝑖,𝑐 𝑥, 𝑤 + 𝐿𝑖,𝑑 𝑥, 𝑤

1

𝜋𝑟2

𝑝=1

𝑁

𝑓𝑟 𝑥,𝑤𝑝′, 𝑤 ∆Φ𝑝(𝑥, 𝑤𝑝)

𝐿𝑟 𝑥, 𝑤 =
Ω𝑥

𝑓𝑟 𝑥, 𝑤′, 𝑤 𝐿𝑖 𝑥, 𝑤′ 𝑛𝑥 ∙ 𝑤′ 𝑑𝑤′𝑖

Rendering
Radiance estimate - Filtering

 We average the flux in an area

 Special problem with Caustics

 We want to preserve their sharp edges

 We use filtering to get better results

 Increase weight of photons near the point of interest

[imgSiggraph]

Rendering
Radiance estimate - Filtering

 Gaussian filter

 𝑑𝑝 → 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑡ℎ𝑒 𝑝ℎ𝑜𝑡𝑜𝑛

 𝛼 = 0.918

 𝛽 = 1.953

𝑤𝑝𝑔 = 𝛼 1 −
1 − e

−𝛽
𝑑𝑝
2

2𝑟2

1 − e
−𝛽

𝐿𝑟 𝑥, 𝑤 =
1

𝜋𝑟2

𝑝=1

𝑁

𝑓𝑟 𝑥, 𝑤𝑝′, 𝑤 ∆Φ𝑝(𝑥, 𝑤𝑝)𝑤𝑝𝑔

Summary

Summary

 Photon mapping is a 2 pass rendering technique

1. Generate photon maps

 Use Russian roulette (reflect or absorb)

2. Render scene

 Use photon maps to get the radiance average

 Apply filtering in case of caustics

 Maintain sharp edges

Conclusion

Conclusion
Why photon mapping?

 Photon mapping is less expensive than Monte Carlo integration

 Russian roulette

 Probabilistic approach to reduce the number of photons

 Number of lights does not affect photon number

 While rendering just need to find the nearest photons

 KD-Tree → 𝑂(𝑙𝑜𝑔𝑁)

Credits

 All the formulas and theoretical references of this presentation are from
“Siggraph 2000 - A Practical Guide to Global Illumination using Photon
Maps” (Order and arrangement of contents may not be the same)

 https://graphics.stanford.edu/courses/cs348b-00/course8.pdf

 [imgSiggraph]: image taken from the document above

 [gif00]: Gif I created using giphy.com of the Bioshock Infinite game

 https://giphy.com/gifs/bioshock-infinite-zrqsuyczat4U8/

 [gif01]: https://opengameart.org/content/water-caustics-effect-small

 [img00]: https://commons.wikimedia.org/wiki/File:Caustics.jpg

 [img01]: https://www.flickr.com/photos/snogglethorpe/2612616268

 [img02]: http://therealrichard.deviantart.com/art/Caustics-and-
Coloured-Emission-277601210

https://graphics.stanford.edu/courses/cs348b-00/course8.pdf
https://giphy.com/gifs/bioshock-infinite-zrqsuyczat4U8/
https://commons.wikimedia.org/wiki/File:Caustics.jpg
https://www.flickr.com/photos/snogglethorpe/2612616268

Thanks for listening!

Questions?

